Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
ACS Nano ; 18(3): 2261-2278, 2024 Jan 23.
Artigo em Inglês | MEDLINE | ID: mdl-38207332

RESUMO

Sepsis, which is the most severe clinical manifestation of acute infection and has a mortality rate higher than that of cancer, represents a significant global public health burden. Persistent methicillin-resistant Staphylococcus aureus (MRSA) infection and further host immune paralysis are the leading causes of sepsis-associated death, but limited clinical interventions that target sepsis have failed to effectively restore immune homeostasis to enable complete eradication of MRSA. To restimulate anti-MRSA innate immunity, we developed CRV peptide-modified lipid nanoparticles (CRV/LNP-RNAs) for transient in situ programming of macrophages (MΦs). The CRV/LNP-RNAs enabled the delivery of MRSA-targeted chimeric antigen receptor (CAR) mRNA (SasA-CAR mRNA) and CASP11 (a key MRSA intracellular evasion target) siRNA to MΦs in situ, yielding CAR-MΦs with boosted bactericidal potency. Specifically, our results demonstrated that the engineered MΦs could efficiently phagocytose and digest MRSA intracellularly, preventing immune evasion by the "superbug" MRSA. Our findings highlight the potential of nanoparticle-enabled in vivo generation of CAR-MΦs as a therapeutic platform for multidrug-resistant (MDR) bacterial infections and should be confirmed in clinical trials.


Assuntos
Lipossomos , Staphylococcus aureus Resistente à Meticilina , Nanopartículas , Receptores de Antígenos Quiméricos , Sepse , Infecções Estafilocócicas , Animais , Camundongos , Receptores de Antígenos Quiméricos/uso terapêutico , Infecções Estafilocócicas/tratamento farmacológico , RNA Mensageiro , Antibacterianos/farmacologia , Macrófagos , Sepse/tratamento farmacológico , Lipídeos/farmacologia
2.
Anal Chem ; 94(27): 9715-9723, 2022 07 12.
Artigo em Inglês | MEDLINE | ID: mdl-35771770

RESUMO

Compared with the single-marker detection scheme, the detection of multiple targets in the complex cell and biological environment can obtain more reliable detection results. Herein, we detected miRNA-21 and APE1 in two modes, AND and OR, respectively, based on gold nanoflares and simple logic components. In both modes, DNAzyme and APE1 can get rich fluorescence recovery results by breaking the DNA strands from the gold nanorods (AuNRs) and unquenching under different conditions. In vivo and in vitro experiments suggest that both nanoflares exhibit excellent biocompatibility and make efficient and sensitive judgments on the two targets. This strategy emphasizes the reuse nature of enzymes, and a small amount of target can generate a large amount of fluorescent signal in the logic device, which greatly reduces the detection limit when monitoring low-abundance targets. Since the short-stranded DNA component of the detection device is simple in composition and easy to program its probe sequence, it can be expanded into a detection system for the detection of other sets of related markers, which increases its potential for clinical application.


Assuntos
Técnicas Biossensoriais , DNA Catalítico , Nanopartículas Metálicas , Biomarcadores Tumorais , Técnicas Biossensoriais/métodos , DNA , Ouro , Lógica
3.
ACS Appl Mater Interfaces ; 14(3): 3662-3674, 2022 Jan 26.
Artigo em Inglês | MEDLINE | ID: mdl-35023712

RESUMO

Activities of catalase (CAT) and superoxide dismutase (SOD) of ceria nanoparticles (CeO2 NPs) provide the possibility for their application in nervous system oxidative stress diseases including Alzheimer's disease (AD). The addition of hot electrons produced by a plasma photothermal effect can expand the photocatalytic activity of CeO2 to the near-infrared region (NIR), significantly improving its redox performance. Therefore, we coated both ends of gold nanorods (Au NRs) with CeO2 NPs, and photocatalysis and photothermal therapy in the NIR are introduced into the treatment of AD. Meanwhile, the spatially separate structure enhances the catalytic performance and photothermal conversion efficiency. In addition, the photothermal effect significantly improves the permeability of the blood-brain barrier (BBB) and overcomes the shortcomings of traditional anti-AD drugs. To further improve the therapeutic efficiency, Aß-targeted inhibitory peptides were modified on the middle surface of gold nanorods to synthesize KLVFF@Au-CeO2 (K-CAC) nanocomposites. We have verified their biocompatibility and therapeutic effectiveness at multiple levels in vitro and in vivo, which have a profound impact on the research and clinical transformation of nanotechnology in AD therapy.


Assuntos
Doença de Alzheimer/tratamento farmacológico , Antioxidantes/farmacologia , Materiais Biocompatíveis/farmacologia , Cério/farmacologia , Nanotubos/química , Terapia Fototérmica , Doença de Alzheimer/metabolismo , Peptídeos beta-Amiloides/antagonistas & inibidores , Peptídeos beta-Amiloides/metabolismo , Antioxidantes/química , Materiais Biocompatíveis/química , Barreira Hematoencefálica/efeitos dos fármacos , Cério/química , Ouro/química , Ouro/farmacologia , Humanos , Teste de Materiais
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...